
Resource Monitoring and Analysis of Mars Relay

Operations Service (MaROS) using Splunk

Kevin H. Evans1

Mentors: Joanna Liu2, Brandon Sauer2

1Washington State University
2Jet Propulsion Laboratory/California Institute of Technology

July 29, 2019

Abstract

The Mars Relay Operations Service (MaROS) is a software service used to
coordinate relay communication between Mars orbiters and landers. The soft-
ware has several interconnected interfaces and a growing number of active users,
both from NASA and ESA. In order to gain a deeper understanding of how the
service is accessed, analysis tools can be applied to the data currently collected.
Previously, there was no standardized method of accessing performance metrics
and log data for diagnostics or analysis: traceability of issues was tedious. To
gain more insight into MaROS, Splunk is an apt tool chosen for its robustness
and ease of use for viewers, and the stringent security requirements imposed.
Data and performance metrics are collected and streamed into Splunk real-time.
Several Python scripts were created to fit the diverse range of software utilized
by MaROS. Alerts were created for fault conditions and linear models are used
to alert of potential future issues. This tool allows administrators to quickly
view Splunk for the status of the system in its entirety and are notified of faults
prior to end-users. With Splunk, developers can effectively understand how
MaROS is accessed and plan development decisions based around the collected
data.

1 Background

The Mars Relay Operations Service (MaROS) is a service used to plan the exe-
cution of relay communication between Earth, the Mars orbiters, and the Mars
landers. Relay services through orbiters are typically used rather than direct
transmission to landers, as orbiters provide significantly higher data transmis-
sion rates to Earth at a much lower power cost to the landers. MaROS provides
a standardized interface for planning these relay transmissions, but also stores
and displays the performance metrics from past transactions [1]. This software
service has been developed for over a decade and has grown significantly since
its beginning, both in its codebase and number of active users. The software has
several interfaces, but is accessed primarily through a web-based user interface
and a command-line interface (CLI).

With potential for additional growth [2, 3], it has become critical to leverage
data analysis tools and gain a deeper understanding of how the service is ac-
cessed. With this, developers can effectively understand how MaROS is used and
steer development decisions around collected data. Prior to the implementation
of any data analytics tool, there had been no standardized method of tracing
issues throughout the complex system nor an analytics tool to gather metrics on
users. Several application logs are collected and typically, text searches on these
logs were performed to track errors—often simply using grep. This method is
tedious, especially among distributed environments with several application lay-
ers and servers.

An implementation of a data analytics tool or application performance man-
agement tool (APM) can significantly reduce the time needed to trace issues
[4], simplifying the workflow of system administrators and developers. These
tools allow for an easily-inspectable application, reducing some burden of sys-
tem administration and assisting in pinpointing errors through the application
pipeline. Hundreds of these tools exist with many focused on using collected
data to understand users and improve error traceability. For the applicability of
these tools onto MaROS, several tools were compared using methods outlined
in Section 4. This project focused primarily on tools which are fully compatible
with MaROS and required minimal code changes.

2 Results

Splunk was found to be the most suitable and was integrated alongside MaROS.
Data is streamed into Splunk indexes from several applications within three sep-
arate environments and several dashboards were created, providing an overview
of the entirety of MaROS. Alerts were created to warn of current and future
issues. These alerts are streamed into the chat system (Mattermost) used by the
MaROS team and has shown potential to reduce response time significantly: de-
velopers and administrators are notified immediately of errors occurring on the
system, including those shown in Table 2. However, results of the effectiveness
of this system are still awaiting real-world tests.

1

Preliminary suggestions were drawn from the data collected and analyzed
through Splunk. Data collected during July 2019 shows about two-thirds (65.0%)
of page hits originate from the CLI, with the remaining hits from the web inter-
face. This was collected using queries defined within Appendix A and Appendix
B. However, a vast majority of CLI usage likely originates from automated
scripts: as these hits typically occur on a set schedule ran daily. With the
likely-automated page hits removed, 97.1% of the page hits originate from the
web interface. Of the web users, Firefox and Chrome each account for a third of
hits (35.8% and 34.5% respectively), the rest divided among Safari (26.0%) and
other browsers (< 3.7%). This is significantly different (p < 0.01, N = 38452)
than the global usage of web browsers [5], with just 5.0% of the population using
Firefox.

The MaROS interface previously used a Flash-based legacy interface. This
interface received zero page views during July. Among all hits to the API,
/fetch/MarosPassKey/ is the post popular endpoint, receiving over a thou-
sand requests per day. The API endpoints /api/v2/overflightinfo/ and
/fetch/DatabaseExecuteQuery/ each receive around eight hundred requests
per day. Of the overflight lookups, MAVEN (MVN) is the most popular choice,
accounting for 53.1% of lookups, next being Odyssey (ODY) with 28.3% of
lookups. From MAVEN, Curiosity (MSL) is its most popular lander with 75.1%
of lookups and from Odyssey, InSight (NSY) accounts for 99.5% of its lookups.

3 Conclusions

The addition of Splunk to the tool set of the MaROS developers and adminis-
trators is warranted, aiding in the discoverability of issues and understanding of
how MaROS is accessed. Splunk is in use by other organizations, both on- and
off-lab, with support readily available. Splunk has shown promise by correctly
pinpointing causes of errors in MaROS and the effect of those errors on the sys-
tem. Data collected on the users show a significant difference when compared
globally: special care should be taken when testing web applications, ensuring
compatibility with users’ browsers. As the legacy interface is no longer receiving
page views, it can safely be removed from upcoming versions.

2

4 Data analytics tool considerations

Several factors were considered when determining the ideal candidates for the
analytics tool. There are hundreds of tools which fit this use-case for MaROS,
but only a select handful were considered and examined closely. Shown partly in
Table 1 below, the primary factors were: compatibility with the existing MaROS
software stack, contract requirements and cost, and security of the data stored.
The current software stack is relatively common and as such, many tools support
reading existing MaROS logs with little adjustments required. For any future
additions or changes, the wide support for other applications and log formats
were noted.

Another factor was the potential requirement of code changes to MaROS.
Both New Relic and Azure Application Insights require integration with the
Java-based server. Due to the limitations of the short ten-week internship time-
line and the strict release cycle of MaROS, it would not be feasible to change
any compiled code within MaROS. However, some configuration file changes
were acceptable, as they would not require a new release version to be created
and only a reboot of the system. This greatly affected the choices of potential
analytics tools.

Several of these applications rely on cloud storage which poses some risk for
sensitive data—though this issue is mitigated when selecting an government-
ready storage container, often at a higher cost. Costly solutions were avoided as
it would require additional work and time to start a new contract and addition-
ally, while MaROS is growing, many of these solutions are aimed at high-traffic
and high-volume applications.

Table 1: Brief overview of data analytics tools considered for MaROS

Tool Contract Storage

Splunk Free* Internal
ELK stack Free** Internal
New Relic Monthly Cloud
Microsoft Azure App. Insights Monthly Cloud
Datadog Monthly Cloud

* Free through JPL Cybersecurity group
https://jplsplunk.jpl.nasa.gov/

** All software within the ELK stack is open-source,
however hosting would be required.

Both Splunk and ELK (an acronym for Elastic, Logstash, Kibana) stack
were outliers in several ways: both are more free-form tools and do not have
a singular purpose, but rather are broad tools for data analysis and machine-
generated log monitoring, whereas New Relic and Application Insights are full-

3

https://jplsplunk.jpl.nasa.gov/

fledged APMs. Splunk and ELK ingest various types of logs and provide an
interface for querying against the data, plus provide visualizations and alerting
tools. These applications also do not rely on cloud storage and store data locally.

Ultimately, Splunk became the clear choice. Although Application Insights
or New Relic provide much of the required functionality out-of-box, the free-
form nature of Splunk and ELK stack could be used to examine other metrics
later on. Creating ELK instances would incur costs if the JPL Elastic Search
as a Service1 (JESSi) is used, or if an additional hosted VM is needed for a
self-hosted Elastic Search instance. The JPL Cybersecurity group provides a
free2 hosted service for Splunk, where data is minimally processed locally and
forwarded to their indexing instance. This removes the burden of administrating
an additional server and lowers resource usage on MaROS servers.

Splunk is used by several organizations outside of JPL, including a simi-
lar use-case by the National Ignition Facility [6]. Support is readily available
through the Splunk documentation, as well as their online Q&A-style forum3,
and through Splunk administrators and users at JPL.

4.1 MaROS architecture

The MaROS system uses an architecture similar to many websites, implement-
ing a Java-based backend sever being proxied through a load-balanced Apache
instance. Both the web interface and CLI make use of a RESTful API through
this layer. Additionally, a MySQL server is used to store persistent data. There
are additional data sources used, including external mail servers and APIs, but
data is not collected directly from these and some log data is exposed through
the Java server logs. The Java server and web server (with some application
code) are each housed within a Docker container.

There are three environments used by MaROS: development (“dev”), testing
(“testbeds”), and a production (“ops”) environment are implemented. Each
of these environments consist of one or more load-balanced MaROS system
instances.

5 Splunk add-ons and configuration

Splunk is extensible through the use of add-ons (“apps”). These apps are typi-
cally Python scripts which are spawned by the Splunk daemon and communicate
through stdin and stdout, TCP sockets, or other interfaces. Modular inputs
are scripts which use the Splunk SDK4 to input data on-the-fly. Several modular
inputs were created for MaROS.

1JESSi, https://jessi.jpl.nasa.gov/
2JPL Splunk is free as of July, 2019.
3Splunk Answers, https://answers.splunk.com/
4Splunk SDK, https://github.com/splunk/splunk-sdk-python

4

https://jessi.jpl.nasa.gov/
https://answers.splunk.com/
https://github.com/splunk/splunk-sdk-python

5.1 REST/Jolokia modular input

A modular input was created to poll REST5 endpoints. Initially, this add-on
was used to poll the Java server’s Jolokia endpoint. This endpoint exposed JMX
(Java Management Extensions) data to provide metrics on the Java Runtime
Environment (JRE) and its host server. While free Splunk add-ons exist for re-
trieving JMX data, none were compatible with this Jolokia interface. This data
includes performance metrics, as well as developer-definable counters: various
queue lengths are included in this data and also processor time consumed by
garbage collection in the JRE. This data is used to detect for out-of-memory
conditions, where the JRE halts the main thread due to excess time consumed
by garbage collection [7]. Using the same data, the JRE’s processor time is
monitored as well, as it was noticed that when the JRE is unresponsive, it uses
zero processor time. These can both be monitored and alerts were created to
raise flags during fault conditions.

Though this add-on was initially created to poll REST data, it was later
extended to record response times and HTTP response statuses. Using this
data collected, the availability of each server and uptime percentage can be
determined. These are each displayed on a dashboard and alerts were created,
monitoring the trends in these values.

5.2 MySQL modular input

Another modular input was created to query against MySQL servers. Several
add-ons exist for querying MySQL, but all depended on DB Connect6. DB Con-
nect is a Java-based add-on which is incompatible with Universal Forwarders
and can only be ran on a full instance of Splunk, requiring an additional Splunk
license. Using a lightweight Python script, a new add-on was created to poll
MySQL with arbitrary queries and intervals. For performance metrics, data is
queried against tables within PERFORMANCE SCHEMA and INFORMATION SCHEMA.
These schemata contain statistics on all MySQL tables, including various per-
formance counters. All MySQL processes are polled frequently and queries with
long runtimes are recorded. Later, this may be changed to take advantage of the
native slow and general query log, once enabled on the servers. These additional
log tables are currently disabled as the MySQL is not managed directly by the
MaROS team.

5.3 Docker status modular input

Data from the Docker daemon is collected as a modular input. This modular
input polls the Docker API at a set interval and collects data relating to running
containers. The API is exposed through a REST interface over a Unix socket.
Data collected includes both the status of containers and resource usage of

5REST (Representational State Transfer) is a standardized method of accessing data over
web services.

6Splunk DB Connect, https://splunkbase.splunk.com/app/2686/

5

https://splunkbase.splunk.com/app/2686/

the host system. Process data can additionally be collected, but is currently
disabled. The process data would generally be unused and is simply excessive
for monitoring status. The Docker status does not return resource utilization
as percents, but rather uses several counters. A simple formula is used to
determine processor utilization and uncached/cached memory utilization from
these counters. Proportional processor usage is determined by calculating two
differences in processor time, ∆t, and the number of available processors N ,

pcpu =

{
∆tcontainer
∆tsystem

∗N ∆tcontainer,∆tsystem > 0

0 otherwise

The proportional memory usage is found using bytes of memory m,

pmem =
mused −mcached

mtotal

Once this data is collected, the data was plotted in Splunk in several dashboards,
visible in Figure 1 and 2. Alerts were initially created to warn of memory and
processor usage beyond 50%. After the deployment to ops, it was soon changed
to warn if the three-minute running average was beyond 75%. Other tests
included using a Wilcoxon signed-rank test to determine if current resource
usage was significantly higher than earlier values, but it was found that simpler
tests were more reliable at detecting problems.

5.4 Installation and initial configuration of Splunk

The JPL Splunk team provides a preconfigured installer script for the Splunk
Universal Forwarder (UF). As the MaROS environment uses Docker for server
applications, it was decided to use Docker for housing and managing the Splunk
UF instance. A Dockerfile was created based on a minimal CentOS 7 image,
which uses the JPL Splunk installer and configures the UF instance. Several
Splunk apps and configuration files are copied over during build-time. This
method greatly reduces complexity when installing or upgrading a Splunk in-
stance: a Makefile handles all complex commands and a deploy requires only a
single command. In future versions, this may be simplified more using a hyper-
visor or orchestration tool for Docker, along with a registry for Docker image
upgrades.

The Docker image contains several scripts, including entrypoint.sh and
healthcheck.sh. entrypoint.sh is used as a main entry point for Docker and
manages the splunkd process and abstracts away some permissions-related.
healthcheck.sh is polled periodically by the Docker daemon and returns data
of the health of splunkd.

Splunk relies on configuration files to read logs using the native file monitor.
Primarily, the props.conf defines a sourcetype, indicating how files are read
and parsed, and inputs.conf defines the paths of the log files. The sourcetypes
may be defined in the web interface as well. Splunk has a built-in file parser
which breaks events on predefined rules. Regular expressions are used to break

6

individual log entries into smaller components usable by the search engine. The
regular expressions used to break the log4j-style events are noted in Appendix
C, using the positive lookahead group-naming syntax (?P<...>) to name such
attributes. These properties may be used in search queries directly, exempli-
fied in Appendix B. This feature of Splunk is valuable, allowing free-form text
extraction without the need for a strict-typing system, like those used in many
traditional databases.

6 Interfaces for administrators

The Splunk web interface provides an easy-to-use and intuitive method of ac-
cessing and visualizing logs, as well as creating summaries of data and creating
real-time alerts. Permissions are managed by LDAP groups and require no ad-
ditional configuration. Dashboards can be created by any user and require little
knowledge of the Splunk search processing language (SPL).

6.1 System and performance monitoring

A typical use-case of Splunk is providing a summary of a system and the ability
to view performance metrics. Tables in dashboards are generated in real-time,
displaying the health of the system, as shown in Figure 1. For the web services
and MySQL server, an online/offline status is assigned based on the status of
the last test check. The Docker containers are similar and check the time of the
last-online time. These items are color-coded to give an update at a brief glance,
with green representing zero issues. When problems arise, the color changes to
a yellow-red scale, depending on the severity of the problem. Other metrics can
easily be added by modifying the query used to display the table and using a
union to append new data. When a user clicks on the table, a drilldown action
may be specified. This is shown in Figure 2, in which a user selects a Docker
container, navigating to a new dashboard. This new screen displays the current
status and historical resource usage of the selected container.

7

Figure 1: Screenshot of a table displaying MaROS system health for a single envi-
ronment.

Figure 2: Screenshot of charts displaying the status and resource usage by a Docker
container.

Figure 3: Screenshot of alerts within Mattermost, using emojis to categorize alerts.

8

Alerts in Splunk were created to notify the team of potential issues, such as:
high resource usage, specified exceptions and errors, abnormal behavior. Splunk
has several options for notifications, in particular: text message, email, and
Mattermost7. Though most at JPL use Slack for instant messaging, Mattermost
or Jabber is preferred as it is hosted internally and some sensitive data can
be sent, whereas only public information may be sent over Slack. Real-time
Mattermost notifications are fairly useful as they provide an outlet for low- to
medium-priority alerts which do not clutter an email inbox. Figure 3 shows
some example notifications within Mattermost. Emojis are used to categorize
alerts and potentially severity, similar to use of colors and gradients to note
severity within the system overview tables in Figure 1.

Table 2: Excerpt of alerts created in Splunk/Mattermost.

Name Conditions Outcome

Server errors 50X HTTP status errors Discovery of issue related to
redirection in cURL during
API calls.

Database status Connection lost to
database

–

Docker status Docker container falls of-
fline

–

Docker high CPU High average CPU usage –
Java frozen CPU time is zero or high

GC time
Discovery that some large
queries cause garbage col-
lection to use significant
amounts of processor time.

SPS failures MPX API call failure –
Slow queries Query time greater than

3 sec.
Database backups take sig-
nificant amounts of time
and cause table locks.

Exceptions High severity exceptions Email parser fails com-
pletely on development en-
vironment.

6.2 Java exceptions and tracing

Tracing Java exceptions can be done through Splunk. Several dashboards were
created to view exceptions, as well as alerts. These dashboards allow users to
view exceptions and their relative frequencies. When exceptions are selected,
additional details are provided, including a stack trace and exception messages,
and allows the user to view across all logs within a short time span prior to the

7Mattermost is an internally-hosted alternative to Slack, https://mm.jpl.nasa.gov/

9

https://mm.jpl.nasa.gov/

exception thrown. Analyzing the nearby log events can aid in determining the
root cause of the exception. Exceptions are additionally assigned severity values
at search-time. A lookup table exists within Splunk and provides a mapping
between exceptions to an integer value. This severity value is used to determine
which exceptions spawn alerts and which exceptions are filtered on within the
dashboard.

7 Issues encountered

7.1 Full traceability of requests

Unlike full-fledged APMs, there is no direct method of tracing events through-
out the pipeline. New Relic and Azure Application Insights, and many other
APMs, allow events to be broken down to a deeper level, similar to a stack trace.
These APMs have this feature as an agent runs within the server, storing addi-
tional data as requests flow through the pipeline. This typically allows visibility
into the exact queries ran by a request, the functions used by an application,
and other details can be seen. Splunk is unable to do this as it is completely
independent of the server application.

With several code changes, such as including a unique session identifier or
request identifier in all log entries, across all applications, could allow searches
in Splunk to associate log entries and coalesce them as one. As code changes
were specifically avoided during this project, it was not feasible to do. Instead,
events are loosely correlated with time and some log entries are coalesced using
this method. A simple method of implementing this request identifier could be
a cookie generated by the server on the first request, or a static cookie generated
at the start of each request. A custom Logback handler can be implemented by
extending the ClassicConverter class8, which the identifier is printed during
each log entry. In the Apache log, cookies can be appended to logs using a
cookie specifier, like %{MyCustomIdent}C onto the LogFormat format specifier
list.

7.2 Splunk container: failure to poll

Several days after the deployment of Splunk to the production environment, its
host server was updated. The other containers were restarted manually, but the
Splunk Universal Forwarder container was not started. There was some data
lost: the polling scripts were unable to poll, and expected, no data could be
collected for real-time metrics. Since the server applications log to files, there
was no log data loss by those, as Splunk maintains a pointer to last-uploaded log
entries. This was mitigated with the use of the --restart=always argument in
the docker run command. This parameter to the Docker container will restart

8A similar implementation can be found:
https://github.jpl.nasa.gov/gist/khevans/98be18c1a39f301ed71704a06c0054c5

10

https://github.jpl.nasa.gov/gist/khevans/98be18c1a39f301ed71704a06c0054c5

the application during failures and after server restarts. This is not the ideal
solution, but rather a hypervisor should be used to manage Docker containers.

7.3 Add-on maintainability

Custom add-ons can be problematic for maintainability. These scripts may need
to be changed if the APIs of other applications are updated to a newer version
or format.

However, this is not an issue for the add-ons created for this project. The
REST add-on is free-form enough to allow major changes to the Jolokia JMX
API and still log metrics. The Docker API is subject to change in later ver-
sions, but the API version currently used will be supported later on. In Docker
API requests, with the target API version specified, data will be returned in
the target version’s format. The MySQL add-on would not require updates,
unless MySQL is upgraded beyond version 5.7—the API would likely remain
compatible, but 8.0 drops support for several performance counters used by the
add-on.

11

Acknowledgements

I would like to express my appreciation to all those involved in MaROS, espe-
cially my mentors Joanna Liu and Brandon Sauer, as well as the rest of the
MaROS development team, including Frank Hy and Jared Call. I would also
like to thank Cathy Moroney for the incredibly helpful advice regarding presen-
tations.

This research was carried out at the Jet Propulsion Laboratory, California Institute of
Technology, and was sponsored by JPL Summer Internship program (session Summer
2019) and National Aeronautics and Space Administration (80NM0018D004).

12

References

[1] Dan Allard and Roy Gladden. Mars Relay Operations Service (MaROS):
Managing strategic and tactical relay for the evolving Mars network. In 2012
IEEE Aerospace Conference, pages 1–11. IEEE, 2012.

[2] C. D. Edwards, P. R. Barela, R. E. Gladden, C. H. Lee, and R. De Paula.
Replenishing the Mars relay network. In 2014 IEEE Aerospace Conference,
pages 1–13. IEEE, March 2014.

[3] C. D. Edwards, R. Gladden, C. H. Lee, and D. Wenkert. Assessment of
potential Mars relay network enhancements. In 2018 IEEE Aerospace Con-
ference, pages 1–8, March 2018.

[4] Tarek M. Ahmed, Cor-Paul Bezemer, Tse-Hsun Chen, Ahmed E. Hassan,
and Weiyi Shang. Studying the effectiveness of application performance
management (apm) tools for detecting performance regressions for web ap-
plications: An experience report. In Proceedings of the 13th International
Conference on Mining Software Repositories, MSR ’16, pages 1–12, New
York, NY, USA, 2016. ACM.

[5] Wikimedia Foundation. User Agent Breakdowns, Browser Family Time-
series, July 2019.

This contains data on the current usage of browsers that view
Wikipedia. It is used to give a broad representation of global web
browser usage.
https://analytics.wikimedia.org/dashboards/browsers/

[6] Mikhail Fedorov, Phillip Adams, Gordon Brunton, Barry Fishler, Michael
Flegel, Karl Wilhelmsen, and Eric Wilson. Leveraging Splunk for Control
System Monitoring and Management. In Proceedings, 16th International
Conference on Accelerator and Large Experimental Physics Control Systems
(ICALEPCS 2017): Barcelona, Spain, October 8-13, 2017, page TUCPA02,
2018.

[7] Oracle Corporation. Java Platform, Standard Edition Troubleshooting
Guide, March 2015. Release 8.

13

https://analytics.wikimedia.org/dashboards/browsers/

Appendices

Appendix A: Retrieving browsers by family using user agents

eventtype=maros web log s va l id useragent=∗ host=vm−maros−ops∗−golden
| eva l h t tp u s e r ag en t=useragent
| lookup us e r ag en t s h t tp u s e r ag en t
| eva l ua fami ly = IF (useragent == "Python -urllib/2.7"

or ua fami ly == "Python Requests" ,
"Python" ,
ua fami ly

)
| s t a t s count by ua fami ly
| where ua fami ly != "Python"

Appendix B: Bucketing users to CLI/browser usage

| mult i s ea rch
[search eventtype = maros web logs

u r i != ∗ heartbeat ∗
u r i != ∗MarosPassKey∗
useragent = ∗
host = vm−maros−ops∗−golden
f i l e = ∗ . php
s t a tu s = 200

| f i e l d s t ime user u r i s t a tu s method host useragent
| eva l type = "web"

] ,
[s earch eventtype = maro s s e r v e r a c c e s s a p i u r i != ∗ heartbeat ∗

host = vm−maros−ops∗−golden (NOT a p i r e f e r r e r=∗ l e gacy ∗)
a p i u r i != ∗MarosPassKey∗

| rename ap i u s e r agen t as useragent ,
api method as method ,
a p i s t a t u s as s t a tu s
a p i u r i as u r i
ap i u s e r as user

| f i e l d s t ime user u r i s t a tu s method host useragent
| eva l type = "api"

]
| t ab l e type t ime user u r i s t a tu s method host useragent
| eva l h t tp u s e r ag en t = useragent
| lookup us e r ag en t s h t tp u s e r ag en t
| eva l i s c l i = CASE(

type == "api" AND i s n u l l (useragent) , 0 ,
match (useragent , "[Pp]ython") , 1 ,
match (useragent , "Mozilla") , 0 ,
type == "web" AND user == "-" , 1 ,

14

type == "api" AND i s n o t n u l l (useragent) , 1 ,
t rue () , −1

)
| eva l Type = IF (i s c l i == 1 , "CLI hits" , "Web hits")
| s t a t s count by Type

15

Appendix C: Regexes used for field extraction

Listing 1: Multiline log4j-style format, used by logback

(?m)^(?P<timestamp>\d{4}-\d{2}-\d{2}[T]\d{2}:\d{2}:\d{2}[\.\d]{4})\s(?P<

↪→ severity>[A-Z]+)\s\[(?P<sourceFile>[\w.]+):(?P<sourceLine>[\d]+)

↪→ \]\s(?P<logMessage>[^\r\n]+)?(?(?=\s+?\w+\.[\w\.]+\:)(\s+?(?P<

↪→ exception>(\w+\.[\w\.]+)):(\s+)?(?P<exceptionMessage>(?!(\s+at.+\

↪→ s))[^\t]+)?(?P<stacktrace>(\s+at.+\s?)+)?)|[\r\n]+?(?P<

↪→ logMessageAdditional>[\S\s]+))?)

Listing 2: Extraction for Restlet/API access

^.*\[[\w]+\.java:\d+\]\s(?P<api_clientip>[\d\.]+)\s(?P<api_user>[\w]+)?\s

↪→ (?P<api_server_address>[^\s:]+)(:?(?P<api_server_port>\d+)\s|\s)(

↪→ ?P<api_method>\w+)\s(?P<api_uri>[^\s]+)\s(?P<api_uri_query>[^\s]+

↪→)?\s(?P<api_status>\d+)\s(?P<api_bytes_sent>\d+)?\s(?P<

↪→ api_bytes_received>\d+)?\s(?P<api_host>[^\s]+)?[\t](?P<

↪→ api_useragent>.+)?[\t](?P<api_referrer>.+)?$

16

	Background
	Results
	Conclusions
	Data analytics tool considerations
	MaROS architecture

	Splunk add-ons and configuration
	REST/Jolokia modular input
	MySQL modular input
	Docker status modular input
	Installation and initial configuration of Splunk

	Interfaces for administrators
	System and performance monitoring
	Java exceptions and tracing

	Issues encountered
	Full traceability of requests
	Splunk container: failure to poll
	Add-on maintainability

